
 

 

2.3.1 Sufficiency of training 

Practical guidance –automotive 
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Operating scenarios in academic and commercial research for Autonomous Vehicles (AVs) 
focus on structured, human-built environments. Although these scenarios form important 
and obvious use-cases, we must also include the vast scope of natural scenery crucial for 
industries such as construction, agriculture, mining, entertainment and forestry [1, 2]. Here, 
hazards span traditional, many-participant traffic environments to those featuring 
treacherous surfaces and rare-but-critical perceptual scenarios in rough outdoor 
deployments. Throughout, we emphasise the complementary characteristics of 
conventional and emerging sensing technologies in terms of suitability to these different 
scenarios [3]. 

Dataset overview 

Our key contribution is the deployment of one platform in five places ranging from on-road 
to off-road environments. Our focus for data capture revolves around unusual sensing 
modalities, mixed driving surfaces, varied operational domains, and adverse weather 
conditions [4]. We, therefore, complete thousands of kilometres of driving in both rural and 
urban scenes across England and Scotland with our Range Rover RobotCar. Our sensor suite 
comprises sensors traditionally exploited for AVs, including cameras, LiDARS, and GPS/INS. 
However, we also include uncommonly-used sensors that show great promise in challenging 
scenarios, including FMCW radar and audio. Finally, we derive rare and unusual annotations 
(audio narration, etc.) alongside the typical vision-based ground-truth approaches. 

 

   

Figure 1. Vehicle platform and sensor suite and the location in the UK for the collection sites. 
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The dataset is collected using our Range Rover RobotCar platform. This vehicle is ideal for 
mixed driving conditions - on and off-road - and has load and people carrying capacity. For 
these reasons, it is representative of and suitable for a large swathe of possible deployment 
scenarios. 

The vehicle is equipped with an array of sensors, including: 

• A forward-facing stereo camera, typically applied to motion estimation and 
localisation [5], and a set of three two-lens stereo cameras facing forwards and 
backwards, for around-vehicle object detection and semantic scene understanding 
[6]. Cameras are popularly applied but susceptible to appearance changes in 
scenarios of poor weather [7]. 

• A set of five single-beam, 2D lasers and a single multiple-beam 3D laser which form 
the other primary sensor technology applied to navigation [8] and scene 
understanding [9]. These sensors are more robust to illumination but also suspect to 
extreme weather scenarios [10]. 

• A roof-mounted scanning radar, increasingly applied to navigation [11, 12, 13] and 
scene understanding [14, 15, 16] as it is inherently immune to weather or 
illumination. 

• A bumper-mounted automotive radar, more classically applied to object detection 
and already deployed extensively in the semi-autonomous market [17]. 

• An Inertial Navigation System (INS) for proprioceptive motion understanding in the 
case that perception systems fail and are commonly used alongside vision, laser, and 
radar sensors. 

• An in-cabin monocular camera for recording driver behaviour both to advance driver 
assistance systems and for a rich source of information for supervising learnt 
methodologies. 

• The internal controller area network (CAN) bus signals for directly learning how to 
drive in different scenarios, with a view towards linking this with perception systems 
such that decision-making for driving actions on a highly connected vehicle level is 
based on the perceived scenario. 

• Four omnidirectional boom microphones on the two front and two optional back 
wheel arches to help terrain assessment [16, 18] in the case of total lack of 
illumination or light-based sensor degradation. 

• An in-cabin, optional microphone to complement the in-cabin video under 
professional driving instruction and to enrich the situational awareness of our 
vehicles, particularly considering ground signatures and detection of other moving 
audio sources. 
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Figure 2. GPS traces overlaid on map data for the three different routes we traverse for data collection in 
Central and South-West London. 

In collecting this dataset, the Range Rover RobotCar has visited various sites which we 
propose to be representative of important and difficult AV application scenarios. Aside from 
application potential, we view these as lying on a spectrum of scene types, in terms of (1) 
appearance, (2) presence of other actors and (3) driving difficulty. 

• Hounslow Hall Estate, in Buckinghamshire, England. This site features three routes, 
mainly off-road, of increasing difficulty even under fair conditions. Additionally, any 
recent poor weather will make driving even more challenging (e.g. degrading the 
driving surface or the visibility of obstacles). The appearance is dense, visually 
ambiguous vegetation. This site is representative of operating scenarios requiring 
highly non-planar off-road driving, such as search-and-rescue. 

• Ardverikie Estate, in the Scottish Highlands. This isolated estate features gravel and 
rock tracks and sandy beaches in highly variable lighting and weather conditions. 
This off-road scenario presents a distinct visual appearance and more diverse 
scenery (four routes) than the Hounslow Hall Estate (Scottish vs. English scenery, e.g. 
more regular fall/winter snow) but is slightly less challenging in terms of driving 
conditions. This site is representative of operating scenarios in natural heritage 
management. 

• The New Forest, a large area of unenclosed pasture land and forest in Southern 
England. Along the spectrum of driving difficulty, this site presents easy surfaces 
(public roads) and low traffic. It has a visual appearance typical to the rural 
countryside, also featuring small villages. Despite the low traffic, there are other 
mobile vehicles in this area and - uniquely to this part of Hampshire and Wiltshire - 
productive animals (horses, cattle) roam the area freely. We see this site as 
representative of operating scenarios in rural activity. 

• The Oxford Ring-Road, in Oxfordshire. This site features driving at high-speed (up to 
70 mph) around a network of A-, B-, and M-type motorways. This driving is not 
difficult in the sense of surface (although some hazardous wet-weather conditions 
are captured), but it is an essential part of the  dataset as we need AVs to perceive 
hazards even when travelling at high-speed (stopped cars, etc). Visually, this site 
presents semi-urban and motorway scenes. We see this data as being useful in 
application scenarios such as haulage and long-distance people transport. 

• Central and South-West London, specifically around Shepherds Bush, Notting Hill, 
Belgravia, East Sheen, etc. In this area, we perform dense urban driving with a 
professional driving instructor. Visually, this site gives us city scenery - including 
bicyclists, pedestrians, motorbikes, traffic control and signs, road markings, etc. 
Driving difficulty in this area can be complicated by the movement of many other 
actors and their shared use of roads. We see this site as an operating scenario 
suitable for daily short-distance people movement and congestion management. 
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Figure 3. Our platform pictured at the various dataset collection sites. From the top left: the Hounslow Hall 
Estate, the Ardverikie Estate, Central London and the New Forest. 

Annotation 

Aside from the terrain difficulty, the richness of appearance and structure for sensor 
recordings, and traffic conditions discussed above, each of our sites was also chosen based 
on the opportunity to harvest after data collection both popular as well as unusual and rare 
annotations for training machine learning systems. These include, on a site-by-site basis: 

• Bounding box object positions, where the image region corresponding to an object 
are required but a dense scene decomposition is not (see semantic segmentation, 
below). These are specific to a class of object and will therefore dictate scenarios 
directly. For example, “the car in front is stopped despite the next nearest traffic 
light showing green”. These bounding boxes are annotated for camera as well as for 
LiDAR (where we provide 3D boxes) and radar (with a shorter list of categories, as 
radar blobs are less discriminative). For radar, in particular, there is a lack of such 
annotations available. Bounding box datasets abound in the literature [19, 20, 21], 
but we collect them for cameras in order to correspond them with audible 
explanations (see below). These annotations are harvested across primarily the 
Oxford Ring-Road and Central and South-West London, as these feature many more 
object types and actors than the off-road sites. Additionally, the New Forest site 
features both live traffic and freely roaming livestock. 

• Pixel-wise segmentation, many datasets for which exist in urban driving [22, 23, 24]. 
However, for off-road driving, there is a paucity of road-surface labels (especially 
across multiple surface types) [25, 26]. This is important in deciding the style of 
driving which is most appropriate for a given scenario, and as such we also provide 
correspondences with CAN signalling (see above). These annotations are harvested 
primarily in the Ardverikie Estate and Hounslow Hall Estate sites. 
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• Event-based audio-visual sequences, where we uniquely provide synchronised audio 
and video. In urban sites (Central and South-West London) the synchronised audio is 
recorded in-cabin by a professional driving instructor who narrates all driving 
decisions. We provide correspondences with object positions (see above) which are 
mentioned in the narrative. In off-road sites (Ardverikie Estate and Hounslow Hall 
Estate) the synchronised audio is from microphones mounted in the wheel arches, 
for better appraisal of scenarios especially in poor light. 

• Position tracking, using a Leica Viva TS16 Total Station for precise millimetre-
accurate position ground truth for training systems to recover motion in highly non-
planar scenarios. 

We also make an effort to repeat some categories and label types across sites, for greater 
portability of learned knowledge when deploying to new scenarios. For example, driving 
surface segmentation and classification in Scotland also features tarmac. 

 

Figure 4. Examples of annotations on the data. From the left: bounding boxes and pixel-wise segmentation in 
Central London, and pixel-wise segmentation of road surfaces in the Hounslow Hall Estate. 

Summary 

In summary, we present a universal view of AV operating scenarios. We would ideally like 
our vehicles to be deployable in any situation with limited time to develop capability. In 
order to achieve this we require (1) a complementary and robustly populated sensor suite, 
(2) datasets which feature driving scenarios as widely as possible, and (3) consistent 
annotation of all pertinent scenario elements and rich in the sense of linking sensors in the 
suite and being portable across scenarios. 
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